Tensor-Variate Restricted Boltzmann Machines

نویسندگان

  • Tu Dinh Nguyen
  • Truyen Tran
  • Dinh Q. Phung
  • Svetha Venkatesh
چکیده

Restricted Boltzmann Machines (RBMs) are an important class of latent variable models for representing vector data. An under-explored area is multimode data, where each data point is a matrix or a tensor. Standard RBMs applying to such data would require vectorizing matrices and tensors, thus resulting in unnecessarily high dimensionality and at the same time, destroying the inherent higher-order interaction structures. This paper introduces Tensor-variate Restricted Boltzmann Machines (TvRBMs) which generalize RBMs to capture the multiplicative interaction between data modes and the latent variables. TvRBMs are highly compact in that the number of free parameters grows only linear with the number of modes. We demonstrate the capacity of TvRBMs on three real-world applications: handwritten digit classification, face recognition and EEG-based alcoholic diagnosis. The learnt features of the model are more discriminative than the rivals, resulting in better classification performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cumulative Restricted Boltzmann Machines for Ordinal Matrix Data Analysis

Ordinal data is omnipresent in almost all multiuser-generated feedback questionnaires, preferences etc. This paper investigates modelling of ordinal data with Gaussian restricted Boltzmann machines (RBMs). In particular, we present the model architecture, learning and inference procedures for both vector-variate and matrix-variate ordinal data. We show that our model is able to capture latent o...

متن کامل

Enhanced Factored Three-Way Restricted Boltzmann Machines for Speech Detection

In this letter, we propose enhanced factored three-way restricted Boltzmann machines (EFTW-RBMs) for speech detection. The proposed model incorporates conditional feature learning by introducing a multiplicative input branch, which allows a modulation over visible-hidden node pairs. Instead of directly feeding previous frames of speech spectrum into this third unit, a specific algorithm, includ...

متن کامل

Estimating 3D trajectories from 2D projections via disjunctive factored four-way conditional restricted Boltzmann machines

Estimation, recognition, and near-future prediction of 3D trajectories based on their two dimensional projections available from one camera source is an exceptionally difficult problem due to uncertainty in the trajectories and environment, high dimensionality of the specific trajectory states, lack of enough labeled data and so on. In this article, we propose a solution to solve this problem b...

متن کامل

Mixed-Variate Restricted Boltzmann Machines

Modern datasets are becoming heterogeneous. To this end, we present in this paper MixedVariate Restricted Boltzmann Machines for simultaneously modelling variables of multiple types and modalities, including binary and continuous responses, categorical options, multicategorical choices, ordinal assessment and category-ranked preferences. Dependency among variables is modeled using latent binary...

متن کامل

Discriminative Restricted Boltzmann Machines are Universal Approximators for Discrete Data

This report proofs that discriminative Restricted Boltzmann Machines (RBMs) are universal approximators for discrete data by adapting existing universal approximation proofs for generative RBMs. Discriminative Restricted Boltzmann Machines are Universal Approximators for Discrete Data Laurens van der Maaten Pattern Recognition & Bioinformatics Laboratory Delft University of Technology

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015